NUTRIENT MANAGEMENT GUIDELINES FOR SUGARCANE IN THE PROSERPINE DISTRICT

Ameliorants							
Table 1 – Lime guidelines for							
acid soils (when pH water < 5.5)							
CEC	Lime						
(meq/100g)	application						
	(tonnes/ha)						
< 2.0	1.25						
2.0 – 4.0	2.5						
4.1 – 8.0	4						
> 8.0	5						

Table 2 – Lime guidelines based on								
l calcium (Ca)								
Lime application								
(tonnes/ha)								
4								
3.5								
3								
2.5								
2								
1.5								
1								
0								

Table 3 – Magnesium (Mg) guidelines based on exchangeable Mg								
Soil Mg (amm-acet) meq/100g < 0.05								
Mg rate (kg/ha)	150	125	100	75	50	0		

Table 4 – Gypsum guidelines for sodic soils							
ESP (%) Gypsum rate							
	(tonnes/ha)						
< 5	0						
5 - 10	2						
10 - 15	4						
> 15	6						

Table 5 – Silicate guidelines based on reserves and available soil silicon (Si)								
	Si Si Suggested application rate							
	(BSES/sulphuric acid)		(CaCl)					
Si (mg/kg)	< 70	and	< 10	Mud/ash at 200 wet t/ha				

Table 6 – Modifications to ameliorant application rates where mill by-products have been applied							
Product Application rate Reduce the next lime application by: Magnesium (Mg)							
Mill ash	200 wet tonnes/ha	2.5 t/ha	Sufficient Mg for one crop cycle				
Mill mud	200 wet tonnes/ha	2.5 t/ha	Sufficient Mg for one crop cycle				
Mud/ash mixture	200 wet tonnes/ha	2.5 t/ha	Sufficient Mg for one crop cycle				

Nitrogen	Nitrogen (N)									
Table 7 – Nitrogen (N) fertiliser guidelines										
District	Crop		Organic C (%)	range, N miner	alisation index	and N application	on rate (kg/ha)			
Yield		< 0.40	0.41 - 0.80	0.81 - 1.20	1.21 - 1.60	1.61 – 2.00	2.01 – 2.40	> 2.40		
Potential		VL	L	ML	М	MH	Н	VH		
130 tc/ha	Plant after bare fallow	150	140	130	120	110	100	90		
130 tc/na	Replant and ratoon	170	160	150	140	130	120	110		

Table 8 – Calculation of Nitroge	Table 8 – Calculation of Nitrogen (N) rate discount following a legume crop							
Legume crop	N%	Crop dry mass	N discount if	N discount if				
		(t/ha)	cover crop	grain harvested				
			(kg/ha)	(kg/ha)				
		8	360	120				
Saubaan	2.5	6	270	90				
Soybean	3.5	4	180	60				
		2	90	30				
		8		125				
Dogwyt	2.0	6	NI/A	100				
Peanut	3.0	4	N/A	65				
		2		25				
		8	290	100				
Courses	2.0	6	220	75				
Cowpea	2.8	4	145	50				
		2	70	25				
		8	240	80				
Lablab	2.2	6	180	60				
Lablab	2.3	4	120	40				
		2	60	20				

Table 9 – Modifications to nitrogen (N) rate where mill by-products have been applied									
Product	Product Application rate To be subtracted from the appropriate N application rate								
		Year 1 Year 2 Year 3							
Mill ash	200 wet tonnes/ha	Nil	Nil	Nil					
Mill mud	200 wet tonnes/ha	100 kg N/ha	50 kg N/ha	25 kg N/ha					
Mud/ash mixture	200 wet tonnes/ha	60 kg N/ha	30 kg N/ha	15 kg N/ha					

Notes for determining appropriate N application rate

- 1. Determine baseline N rate from Table 7 by using the Organic C (%) value to determine N mineralisation index and N requirement for crop.
- Calculate N rate discount for sugarcane crops that follow a legume crop, using Table 8.
- 3. If mill by-products were applied prior to planting, use Table 9 to determine N rate discount for the N contribution from mill mud and mud/ash mixture.

Example 1.

The Organic C value is 0.8%, the N mineralisation index is low (L), a crop of soybeans was grown with an estimated 6 t/ha dry mass that was harvested for grain. The calculation for the N requirement for a plant crop using the **replant** rate to establish baseline N rate: 160 - 90 = 70 kg N/ha

Example 2.

The Organic C value is 0.8%, the N mineralisation index is low (L) and a mud/ash mixture was applied to the fallow block at 200 wet tonnes/ha.

N requirement for year 1: 140-60 = 80 kg N/haN requirement for year 2: 160-30 = 130 kg N/haN requirement for year 3: 160-15 = 145 kg N/ha

Updated January 2022

NUTRIENT MANAGEMENT GUIDELINES FOR SUGARCANE IN THE PROSERPINE DISTRICT

Phosphoru	Phosphorus (P)										
Table 10 – Ph	Table 10 – Phosphorus (P) fertiliser guidelines										
PBI	P sorption	Crop			BSE	SP (mg/kg) ra	nge and P app	lication rate k	g/ha		
	class		< 5	5 - 10	10 - 20	20 - 30	30 – 40	40 - 50	50 - 60	60 - 120	> 120
> 420	Very high	Plant and replant	80	50	40	30	30	30	30	30	0
7420	veryingii	Ratoon	40	40	30	25	20	20	20	20	0
281 - 420	High	Plant and replant	80	50	40	30	20	20	0	0	0
201 - 420	nigii	Ratoon	40	40	30	25	20	10	0	0	0
140 - 280	Moderate	Plant and replant	60	40	30	20	20	20	0	0	0
140 - 280	140 - 280 Moderate	Ratoon	30	30	20	20	15	5	0	0	0
< 140	Low	Plant and replant	40	30	30	20	20	20	0	0	0
< 140	LOW	Ratoon	20	20	15	10	10	0	0	0	0

Table 11 – Modifications to phosphorus (P) application rate where mill by-products have been applied							
Product	Application rate	P contribution					
Mill ash	200 wet tonnes/ha	Sufficient P for a plant crop and one ratoon					
Mill mud	200 wet tonnes/ha	Sufficient P for two crop cycles					
Mud/ash mixture	200 wet tonnes/ha	Sufficient P for two crop cycles					

Potassium (I	K)								
Table 12 – Pota	assium (K) fe	rtiliser guidelines							
Nitric K (meq/100g)	Texture	Crop	Exchangeable K (meq/100g)						
			< 0.20	0.20 - 0.25	0.26 - 0.30	0.31 - 0.35	0.36 - 0.40	0.41 - 0.45.	> 0.45
	Sand	Plant	100	80	50	50	0	0	0
	Sanu	Replant and ratoon	120	120	100	80	50	0	0
4 O 7O	Loom	Plant	120	100	80	50	0	0	0
< 0.70	Loam	Replant and ratoon	120	120	100	100	80	50	0
	Class	Plant	120	120	100	80	50	0	0
	Clay	Replant and ratoon	120	120	100	100	100	80	0
	Cand	Plant	80	50	0	0	0	0	0
	Sand	Replant and ratoon	100	100	80	50	0	0	0
> 0.70	Loom	Plant	100	80	50	0	0	0	0
> 0.70	Loam	Replant and ratoon	100	100	100	80	50	0	0
	Clau	Plant	100	100	80	50	0	0	0
	Clay	Replant and ratoon	100	100	100	100	80	50	0

Table 13 – Modifica	ations to potassium (K) ap	plication rate where n	nill by-products have b	een applied
Product	Application rate	To be subtracted from the appropriate K application rate		
		Year 1	Year 2	Year 3
Mill ash	200 wet tonnes/ha	120kg K/ha	120kg K/ha	120kg K/ha
Mill mud	200 wet tonnes/ha	50 kg K/ha	0	0
Mud/ash mixture	200 wet tonnes/ha	120kg K/ha	120kg K/ha	0

Sulphur (S)			
Table 14 – Sulphur fert	able 14 – Sulphur fertiliser guidelines (kg/ha) for plant and ratoon crops		
Sulphate S	N mineralisation index	N mineralisation index	N mineralisation index
(mg/kg)	VL - L	ML - M	MH - VH
< 5	25	20	15
5 – 10	15	10	5
11 – 15	10	5	0
> 15	0	0	0

Table 15 – Modifica	fications to sulphur (S) application rate where mill by-products have been applied				
Product	Application rate	To be subtracted from the appropriate S application rate			
		Year 1	Year 2	Year 3	
Mill ash	200 wet tonnes/ha	0	0	0	
Mill mud	200 wet tonnes/ha	15kg S/ha	15kg S/ha	15kg S/ha	
Mud/ash mixture	200 wet tonnes/ha	15kg S/ha	15kg S/ha	0	

Micronutrients		
Table 16 – Copper (Cu) fertiliser guidelines		Table 17 – Zin
Copper (DTPA)	Application rate	Zinc (HC
< 0.2 mg Cu/kg	10 kg Cu/ha once per crop cycle	< 0.6 mg Z
		-: /

	Table 17 – Zinc (Zn) fertiliser guidelines	
Zinc (HCL)		Application rate
	< 0.6 mg Zn/kg	10 kg Zn/ha once per crop cycle
Zinc (DTPA)		Application rate
	< 0.3 mg Zn/kg	10 kg Zn/ha once per crop cycle

These guidelines summarise information contained in the SIX EASY STEPS® district specific Nutrient Management program.

This resource is made available by the SIX EASY STEPS Research and Development team. It was developed through project funding from several sources over an extended period.