

Soil and irrigation: soil texture and structure

Soil consists of five main components:

- air
- water
- organic matter
- mineral solids (sand, silt and clay)
- living plants and animals.

Air and water are stored in the spaces (soil pores) between the soil particles. The size and number of these pores are influenced by the soil texture and the soil structure.

Soil texture

The relative proportion of sand, silt and clay present in a soil is known as the soil texture (Figure 1). Sand particles are the largest in size followed by silt with clay having the smallest particle size.

Texture will influence the movement of water through the soil, how much water can be stored in the soil, and how much of the stored water is available to plants (see Table 1 overleaf).

In irrigation terms, texture will determine the rate at which water should be applied, how much should be applied and how often irrigation should occur. For example, clay soils only infiltrate water slowly, so applying large volumes quickly will lead to run-off. However they can store large amounts of water and will therefore require less frequent irrigation.

Figure 1: The percentage of sand, silt and clay determine soil texture.

Soil structure

The structure of a soil is the way the soil particles are grouped together to form a soil crumb or 'ped' (Figure 2). Organic matter will aid in providing good soil structure because it acts likes glue, binding soil particles together.

Figure 2: Representation of a soil particle showing the arrangement of sand, silt, clay and organic matter.

Good structure allows for improved infiltration and drainage (see Table 2 overleaf). It also enhances root growth. This provides the plant with the ability to access a greater amount of water and nutrients.

While soil texture remains constant, soil structure can be lost through destructive tillage practices and compaction. Poor structure reduces infiltration and water holding ability and will make irrigation more difficult to manage.

Reference

Schroeder B, Wood A, Panitz J (2007) Accelerating the adoption of best practice nutrient management: Burdekin district. BSES Limited, Brisbane.

Anon. Soil texture diagram. http://www.jsu.edu/dept/ geography/mhill/phylabtwo/lab12/soiltextdiag.html (accessed 12 June 2014).

Table 1: Texture effects on soil properties relating to irrigation (Schroeder et al., 2007).

Soil property	Soil texture						
	Sand	Loam	Silty loam	Sandy clay loam	Clay		
Internal drainage	High	Moderate	Moderate-low	Moderate-low	Moderate-low		
Plant available water	Low	Moderate	High	Moderate	Moderate-high		

Table 2: Soil structure effects on soil properties relating to irrigation (Schroeder et al., 2007).

Soil property	Level of soil structure						
	Structureless	Weak	Moderate	Strong blocky	Strong prismatic		
Internal drainage	Moderate-high	Low-moderate	Moderate	Moderate	Low (within) Moderate-high (between) *		
Plant available water	Low	Moderate-high	Moderate	Moderate-high	Low		

* Soils with a strong prismatic structure have poor drainage within the soil peds, but because they tend to crack, the drainage between the peds can be high.

© 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Sugar Research Australia Limited. **Disclaime** In this disclaimer a reference to 'SRA', we', 'us' or 'our' means Sugar Research Australia in limited and our directors, officers, agents and employees. Although we do our best to present information that is correct and accurate, we make no warranties, guarantees or representations about the suitability, reliability, currency or accuracy of the information appearing in this information Sheet, for any purposes. Subject to any terms implied by law and which cannot be excluded, we accept no responsibility for any loss, damage, cost or expense incurred by you as a result of the use of, or reliance on, any materials and information appearing in this information finet. You, the user, accept sole responsibility and risk associated with the use and results of the information appearing in this information sheet. You due use the will not be liable for any loss or damage whatsoever (including through negligence) arising out of, or in connection with the use of this information Sheet. We recommend that you contact our staft before acting on any information provided in this information Sheet. Warning Our tests, inspections and recommendations should not be reliefed on without further, independent inquine:. They may not be accurate, complete or applicable for your particular needs for many reasons, including (for example) Sugar Research Australia being unaware of other matters relevant to individual crops, the analysis of unrepresentative samples or the influence of environmental, managerial or other factors on production.